Fractal dimension of Katugampola fractional integral of vector-valued functions

نویسندگان

چکیده

Calculating fractal dimension of the graph a function not simple even for real-valued functions. While through this paper, our intention is to provide some initial theories graphs vector-valued In particular, we give fresh attempt estimate Katugampola fractional integral continuous bounded variation defined on closed interval in $$\mathbb {R}.$$ We prove that 1 and so its integral. Further, Hölder function, an upper bound box each coordinate function.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional-order boundary value problems with Katugampola fractional integral conditions

*Correspondence: [email protected] Department of Mathematics, Eastern Mediterranean University, Gazimagusa, Turkish Republic of Northern Cyprus Abstract In this paper, we study existence (uniqueness) of solutions for nonlinear fractional differential equations with Katugampola fractional integral conditions. Several fixed point theorems are used for sufficient conditions of existence (u...

متن کامل

Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds

If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of  graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.  

متن کامل

0 Integral Operators on Spaces of Continuous Vector - valued functions

Let X be a compact Hausdorff space, let E be a Banach space, and let C(X,E) stand for the Banach space of E-valued continuous functions on X under the uniform norm. In this paper we characterize Integral operators (in the sense of Grothendieck) on C(X,E) spaces in term of their representing vector measures. This is then used to give some applications to Nuclear operators on C(X,E) spaces. AMS(M...

متن کامل

Fractal dimension and vector quantization

We show that the performance of a vector quantizer for a self-similar data set is related to the intrinsic (“fractal”) dimension of the data set. We derive a formula for predicting the error-rate, given the fractal dimension and discuss how we can use our result for evaluating the performance of vector quantizers quickly.

متن کامل

Differentiation of Vector-Valued Functions

This important result is listed in the theorem on the next page. Note that the derivative of the vector-valued function is itself a vector-valued function. You can see from Figure 12.8 that is a vector tangent to the curve given by and pointing in the direction of increasing values. tr t r t r f t i g t j lim t→0 f t t f t t i lim t→0 g t t g t t j lim t→0 f t t f t t i g t t g t t j lim t→0 f ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Physical Journal-special Topics

سال: 2021

ISSN: ['1951-6355', '1951-6401']

DOI: https://doi.org/10.1140/epjs/s11734-021-00327-2